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Abstract. The composite fermion (CF) model has been strikingly successful in describing
many aspects of the fractional quantum Hall effect (FQHE) observed in two-dimensional electron
systems (2DES). In the CF picture, the FQHE is the integer quantum Hall effect of the CFs.
In order to assess the effect of an in-plane magnetic field on the CFs we have examined the
temperature dependence(40 mK 6 T 6 1 K) of the oscillations inρxx in a high-mobility GaAs–
(Ga, Al)As heterojunction close to Landau level filling factorsν = 1

2 and 3
2 for many different

values ofθ , the angle between the normal to the 2DES and the magnetic field. The CF energy
gaps were evaluated at each angle using a variant of the Lifshitz–Kosevich approach. Close
to ν = 1

2 , it was found that the CF gaps at each angle could be fitted to within experimental
errors using a constant CF effective mass. However, the CF effective mass was found not to
follow the θ -dependence expected for a purely 2D system; i.e. the CF energy gap at fixedν

grows markedly with increasing in-plane field. Aroundν = 3
2 the situation is more complex,

and the oscillations of the energy gaps atν = 8
5 , 7

5 and 4
3 asθ varied were interpreted using a

recent model of two independent CF Landau fans separated by the Pauli spin splitting (Du R R,
Yeh A S, Stormer H L, Tsui D C, Pfeiffer L N and West K W 1995Phys. Rev. Lett.75 3926).
However, whilst the model qualitatively predicts some of the behaviour of theρxx -minima, it
is unable to account for the absolute sizes of the energy gaps. In order to reproduce the gaps
at ν = 7

5 and 4
3 quantitatively, an angle-dependent CF mass (as observed close toν = 1

2) is
required. The data suggest that the compression of the electronic wave function due to the
in-plane field and exchange effects both play a role in determining the size of the CF gaps and
cast doubts on the supposed ‘universal’ behaviour of the CF mass.

1. Introduction

The observation of the fractional quantum Hall effect in the high-mobility two-dimensional
electron system (2DES) in GaAs–(Ga, Al)As heterojunctions has generated considerable
experimental and theoretical interest [1]. One of the most interesting developments in this
field came with the introduction of the composite fermion approach [2–4], which exploits a
gauge freedom applicable only in two dimensions. An even number 2p of flux quanta are
attached to each electron, making a composite fermion which obeys Fermi–Dirac statistics.
Owing to the attachment of the flux quanta, the composite fermions experience zero effective
magnetic field atB1/2p = Nsh/eν, where the magnetic fieldB is assumed to be perpendicular
to the 2DES,Ns is the areal carrier density andν = 1/2p is the Landau level filling factor.
The fractional quantum Hall effect is then envisaged as the integer quantum Hall effect of
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the composite fermions moving in the effective fieldB∗ = B −B1/2p. Thus, the oscillations
in the transverse component of the resistivityρxx associated with the fractional quantum Hall
effect have been analysed in the same way as conventional Shubnikov–de Haas oscillations
to yield a composite fermion effective mass [5, 6]. This effective mass can be used to
predict the fractional-quantum-Hall-effect gaps in a consistent manner and has been found
to have a slow dependence on the total effective field [5, 6].

Although a number of experimental probes have now been used to study the properties
of composite fermions (see e.g. references [5–7]), almost all work has been performed with
the magnetic field applied perpendicular to the 2DES layer. In order to assess the effect of
an in-plane magnetic field on the composite fermions, we have examined the temperature
dependence of the oscillations inρxx in a high-mobility GaAs–(Ga, Al)As heterojunction
close to filling factorsν = 1

2 andν = 3
2 for many different values ofθ , the angle between

the normal to the 2DES and the magnetic field. Close toν = 1
2, we find that the composite

fermion effective mass does not follow the angle dependence expected for a two-dimensional
entity, whilst aroundν = 3

2 we find that the recent model proposed by Duet al [8] is unable
to account for the absolute values of the composite fermion energy gaps.

This paper is organized as follows. Experimental details are given in section 2, and
section 3 describes the evaluation of the composite fermion energy gaps close toν = 1

2 as
a function of the tilt angle. In displaying the effect of an in-plane field, our method is to
derive an average composite fermion effective mass which describes the energy gaps for
3
5 > ν > 3

7 to a reasonable accuracy and to then evaluate how this parameter varies with
tilt angle. Section 4 covers the evaluation of energy gaps close toν = 3

2 as a function of
tilt angle and section 5 gives a comparison of their sizes with a modification of the model
of reference [8]. A summary is given in section 6.

2. Experimental details

The sample used was a 500µm wide Hall bar of accurately known geometry constructed on a
GaAs–(Ga, Al)As heterojunction with an undoped spacer layer width of 120 nm. The wafer
was mounted next to a Ru2O3 temperature sensor with a well known magnetoresistance
correction in the plastic tail of an air-spring-damped top-loading dilution refrigerator.
Both sample and thermometer were immersed in the3He–4He mixture and cooled slowly
(∼10 hours) from room temperature to 50 mK in zero magnetic field. After brief illumination
in zero magnetic field with a red LED at 50 mK, the sample had the areal carrier density
Ns = 1.2 × 1015 m−2 and electron mobilityµ = 900 m2 V−1 s−1. The sample was rotated
in situ so that the surface normal made anglesθ = 0.0, 18.3, 28.2, 39.1, 43.4, 48.9, 54.1,
60.0 and 70.6◦ to the magnetic field. At each angle, simultaneous measurements ofρxx and
ρxy were performed at around twelve temperatures in the range 40 mK6 T 6 900 mK,
each temperature being stabilized electronically. In addition,ρxx and ρxy were recorded
for many more tilt angles at a constant temperature of 140 mK. Standard low-frequency
(∼18 Hz) lock-in techniques were employed for the magnetoresistance measurements, using
an A.C. current of 10 nA; the direction of current flow was always kept perpendicular to
the applied magnetic field (i.e. the Hall bar was rotated about its long axis). Great care was
taken to avoid sample heating due either to the applied current or to external sources of
noise. The sweep rate of the superconducting magnet was always60.5 T min−1, and any
hysteresis effects in the cycling of the superconducting magnet were kept to a minimum by
recordingρxx- andρxy-data only on upsweeps.
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Figure 1. (a) showsρxx -data close toν = 1
2 (at 9.75 T) for temperatures 406 T 6 850 mK

with the magnetic field applied perpendicular to the 2DES (θ = 0). (b) illustrates the definition
of the oscillation amplitudes used in equation (2). (c) showsρxx -data for θ = 28.2◦ and
1006 T 6 850 mK.

3. Experimental results close toν = 1
2

Figure 1(a) showsρxx for several different temperatures close to filling factorν = 1
2; the

magnetic field is perpendicular to the 2DES (θ = 0). The minima inρxx which will be
used in the analysis below are visible at fractional filling factors3

5, 4
7, 5

9, 6
11, 7

13, 6
13, 5

11, 4
9

and 3
7, corresponding to integer composite fermion filling factorsν∗, where

ν = ν∗

2pν∗ ± 1
(1)

and p is equal to one for this series of composite fermion states [5, 6]. Furthermore, the
maxima inρxx between the above-mentioned fractions (i.e. at half-integerν∗) are also used
in the following analysis.

The procedure for extracting the composite fermion effective massmcf starts by
assuming that the oscillations inρxx on either side ofν = 1

2 are the Shubnikov–de Haas
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Figure 2. (a) contains fits of equation (2) to the amplitude of theρxx -oscillations atν = 3
5

(squares) andν = 5
9 (diamonds). (b), (c) and (d) show the energy gapsEcf versus total field

B at anglesθ = 0, 28.2◦ and 39.1◦ respectively; points are experimental data and lines are
straight-line fits. The energy gaps are plotted in units of ¯he/me (i.e. teslas) as the gradients of
the straight-line fits then give directly the reciprocal of the composite fermion effective mass in
units of me.

oscillations of the composite fermions at low effective field [5, 6]. The analysis of the
data is based on the techniques applied to the Shubnikov–de Haas and de Haas–van Alphen
oscillations of metals [9]; the amplitudeA(B∗, T ) of each oscillation inρxx (see figure 1(b);
note that both maxima and minima inρxx are used) is fitted to the temperature-dependent
phase-smearing term of the Lifshitz–Kosevich formula [9]:

A(B∗, T ) = F(B∗)
χ

sinh(χ)
(2)

where F(B∗) is a function of only the effective magnetic field [9],χ = 2π2kBT/Ecf,
Ecf = h̄eB∗/mcf is the separation of the composite fermion Landau levels, andmcf is the
composite fermion effective mass. Typical fits of equation (2) to the data are shown in
figure 2(a). As the Lifshitz–Kosevich formalism can only be used for small, approximately
sinusoidal oscillations inρxx , the analysis in this paper was restricted to the fractions listed
above [10]; lower-numerator fractions (e.g.ν = 2

3, 2
5) are too large for such methods over

the temperature range used [11].
As has already been mentioned, our method of displaying the effect of an in-plane field

is to derive an average composite fermion effective mass which describes the energy gaps
for 3

5 > ν > 3
7 to a reasonable accuracy [11] and to then evaluate how this parameter

varies with tilt angle. The procedure for obtaining the average composite fermion mass is
displayed in figure 2(b), which shows the values ofEcf plotted as a function oftotal field
(the sign ofEcf has been reversed for negativeB∗); the points lie on a straight line passing
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throughEcf ≈ 0 at ν = 1
2. This result shows that to the limit of experimental accuracy the

composite fermion levels are symmetrical aboutν = 1
2 and thatmcf does not vary greatly

over this small range of effective field [5, 6]. Hence all of the fractional quantum Hall
gaps studied are described with reasonable accuracy using one composite fermion effective
mass [13], and an average value ofmcf can be extracted from the gradient of the straight
line in figure 2(b).

In order to check that the results did not depend on the sample contact geometry,Ecf

was also extracted by fitting equation (2) to the amplitude of the oscillations in dρxy/dB [15]
obtained by numerically differentiating the Hall data; within the experimental errors, the
same values ofEcf were obtained [16].

Figure 1(c) showsρxx close to ν = 1
2 at a tilt angle ofθ = 28.2◦. Resistivity

features observed at magnetic fieldsB(0) at θ = 0 have shifted up to higher fields
B(θ) = B(0)/cosθ , as expected for a 2DES. As has been mentioned above, in the CF
picture in perpendicular field,Ecf = h̄eB∗/mcf. As the functional form of the oscillations
close toν = 1

2 does not appear to change drastically with tilt angle, we assume thatEcf

also has the form ¯he(B − B1/2)/µ at other field orientations, whereB and B1/2 are the
total magnetic fields at which corresponding features are observed andµ(θ) is a mass to
be determined.

Figure 3. (a) shows values of the average composite fermion massµ derived from straight line
fits such as those in figures 2(b)–2(d) versusθ (inverted triangles). The dotted line depicts the
function µ = mcf/cosθ and the solid line depicts equation (3). (b) shows the energy gaps for
ν = 3

5 and 3
7 as a function ofθ generated usingE = h̄e|(B − B1/2)|/µ(θ) with µ(θ) from

equation (3) (solid curve). (c) shows a similar calculation forν = 4
7 and 4

9 (solid curve). For

comparison, experimental values for the gaps are also shown (triangles,3
5 ; circles, 3

7 ; squares,
4
7 ; diamonds,4

9); the reasonable agreement between calculation and data shows thatµ(θ) is a
suitable means for describing the variation of all gaps observed withθ .
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Averaged values ofµ were determined by findingEcf using equation (2) and then
plotting the values as a function of total fieldB; figures 2(c) and 2(d) show examples of
this for θ = 28.2◦ and 39.1◦. Using all of the available data, a plot ofµ versusθ can
then be made, and this is shown as figure 3(a). If the composite fermions were purely
2D entities, one would expectEcf to depend only on the perpendicular component of the
magnetic field,B cosθ . In this caseEcf = h̄e(B −B1/2) cosθ/mcf, yieldingµ = mcf/ cosθ .
Figure 3(a), however, shows thatµ increases more slowly withθ than 1/cosθ ; in fact the
variation ofµ with θ may be fitted empirically by the function

µ(θ) = 0.70me

cos(0.75θ)
(3)

where me is the free-electron mass. No theoretical significance can be attached to this
equation; it is merely a convenient way of parametrizing the variation ofµ which will be
useful in later analysis.

Equation (3) implies that the composite fermion energy gaps are growing with increasing
tilt angle, perhaps due to the increasing component of magnetic field in the plane of the
2DES. To emphasize this point, equation (3) has been used to generate the magnitudes of
the Ecf at various fractionalν as a function ofθ in figures 3(b) and 3(c); if the composite
fermions were purely two dimensional, the gap would depend only on the component ofB

perpendicular to the 2DES (B cosθ ) and so would be a constant. We shall return to this
point in section 5 once data aroundν = 3

2 have been discussed.

Figure 4. Plots ofρxx aroundν = 3
2 for several values

of the tilt angleθ at T = 140 mK; the field axis depicts
the component ofB perpendicular to the 2DES. The
vertical dotted lines show the positions of fractional
filling factors ν.

4. Experimental results close toν = 3
2

Figure 4 showsρxx close toν = 3
2 at several tilt anglesθ . In the composite fermion picture,

the fractional-quantum-Hall-effect states at aroundν = 3
2 are regarded as theν ′ = 2 − ν
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Figure 5. R(r/s) = ρxx(ν = r/s)/ρxx(ν = 3
2) versusθ for r/s = 5

3 (a), 8
5 (b), 7

5 (c) and 4
3

(d). Maxima indicate angles at which the energy gap falls to a very small value.

states made up of holes in the upper spin state of the lowest electron Landau level [8];
the fractional quantum Hall states become equivalent to composite fermion Landau levels
due to an effective fieldB∗ = 3(B − B3/2) [8, 17]. As has been noted on a number of
previous occasions [8, 18, 19], the minimum atν = 5

3 remains strong, whereas those at
ν = 8

5, 11
7 , 10

7 , 7
5 and 4

3 oscillate in strength asθ is varied. Figures 5(a), 5(b), 5(c), and
5(d) emphasize this fact by displayingR(r/s) = ρxx(ν = r/s)/ρxx(ν = 3

2) as a function
of θ at a constant temperature of 140 mK (the normalization is carried out to remove any
backgroundθ -dependence of the resistivity [8]). In the cases ofν = r/s = 8

5, 7
5 and 4

3,
R(r/s) exhibits maxima at the angles 53± 3◦, 65± 2◦ and 59± 2◦ respectively, indicating
that the energy gap atν = r/s has collapsed to a small value at these points. However,
R( 5

3) indicates no strong peak as a function of angle.
Energy gaps atν = 5

3, 8
5, 7

5 and 4
3 were derived using the temperature dependence

(40 mK–1 K) of the oscillations inρxx in a similar fashion to that detailed in section 3. In
some cases, the strong temperature dependence of the background resistivity or the close
proximity of other fractions meant that the amplitude of the oscillation inρxx was difficult to
define. When this occurred, the value ofρxx at the fractional-quantum-Hall-effect minimum
was fitted to a modified Lifshitz–Kosevich formula:

ρxx(B
∗, T ) = C − F(B∗)

χ

sinh(χ)
(4)

(cf. equation (2)) whereC is a parameter (allowed to vary in the fitting procedure)
representing the background magnetoresistance from which the oscillations deviate. This
method was checked against the more conventional analysis (equation (2)) for the well
defined oscillations and was found to give the same results within the experimental errors.
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This indicates the validity of the method, and in particular that the parameterC does not,
for example, depend strongly on the temperature.

Figure 6. Energy gaps forρxx -minima at aroundν = 3
2 versus the tilt angleθ . (a) The gap for

ν = 5
3 . Points are data and the curve is equation (8). (b) The gap forν = 8

5 . Points are data
and the curves are generated by equations (9) and (10) withµ′(0) = 0.1me, geff = 3.2 (dashed
line); µ′(0) = 0.33me, geff = 0.91 (solid line);µ′(0) = 0.7me, geff = 0.46 (dotted line). (c)
The gap forν = 7

5 . Points are data and the curves are generated by equations (9) and (10)
with µ′(0) = 0.325me, geff = 0.997 (dashed line);µ′(0) = 0.325me, geff = 1.01 (solid line);
µ′(0) = 0.35me, geff = 0.972 (dotted line). (d) The gap forν = 4

3 . Points are data and the
curves are generated by equations (9) and (10) withµ′(0) = 0.30me, geff = 1.57 (dashed line);
µ′(0) = 0.325me, geff = 1.45 (solid line);µ′(0) = 0.35me, geff = 1.35 (dotted line).

Energy gaps atν = 5
3, 8

5, 7
5 and 4

3 derived in this manner are shown as functions ofθ

in figure 6. Note that the energy gaps at8
5, 7

5 and 4
3 decrease to very small values at angles

close to those at whichR(r/s) exhibited maxima (see figures 5(a)–5(d)).

5. Discussion

In interpreting the data displayed in the two previous sections, two phenomena must be
taken into account, the non-two-dimensional nature of the composite fermion effective mass
and the vanishing of some of the composite fermion gaps at aroundν = 3

2 at particular
angles. Noting the similarity of the latter phenomenon to the vanishing of the spin splitting
of conventional Shubnikov–de Haas oscillations in two-dimensional systems at certain tilt
angles (i.e. the so-called ‘coincidence’ [20] or ‘harmonic ratio’ [21] methods to determine the
g-factor) Duet al have proposed an ingenious interpretation of the latter phenomenon [8].
In this approach, the composite fermion Landau levels close toν = 3

2 are assumed to be
split by a Pauli spin-splitting term± 1

2geffµBB (heregeff is the effectiveg-factor andµB is



Composite fermion effective mass 10415

the Bohr magneton) which depends on the total magnetic field. However, Duet al proposed
that the composite fermion cyclotron energy depends only on the component of the effective
field perpendicular to the 2DES,(B−B3/2) cosθ . Thus the composite fermion energy levels
are assumed to have the form [8]

E(n) = − h̄e

me

{
3|(B − B3/2)| cosθ(n + 1

2)

(mcf/me)
± geffB

4

}
(5)

wheren = 0, 1, 2, 3 etc. and the minus sign takes account of the fact that these are ‘hole-
like’ levels. The factor 3 is included to give the correct value of the effective field around
ν = 3

2 [8, 17] andmcf is assumed (in the approach of Duet al) to be independent ofθ .
The filling factorsν at which minima inρxx are observed are then related to the composite
fermion filling factorsν∗ (i.e. the number of filled composite fermion hole levels) by [8]

ν = 3ν∗ ± 2

2ν∗ ± 1
. (6)

Equation (5) predicts that if one remains at a constant value ofν or ν∗ (i.e. at a constant
value of B cosθ ), the effect of tilting the magnetic field is to increase the spin splitting
relative to the cyclotron splitting; this results in the energy gaps (i.e. composite fermion
level separations) at particular filling factors vanishing at certain anglesθv. Combining
equations (5) and (6), the values ofθv at which the gaps atν = 8

5, 7
5 and 4

3 first vanish are
given by

cosθv = geff
mcf

me
f (7)

wheref = 2.5, 1.25 and 1.5 forν = 8
5, 7

5 and 4
3 respectively. Theseθv may be identified

with angles 53±3◦, 65±2◦ and 59±2◦ at whichR(r/s) exhibits maxima forν = r/s = 8
5,

7
5 and 4

3 respectively (figures 5(a)–5(d)). Substituting these angles into equation (7) yields
geffmcf/me = 0.24± 0.02, 0.34± 0.02 and 0.34± 0.02 for ν = 8

5, 7
5 and 4

3 respectively.
Du et al performed a similar analysis and obtained similar values forgeffmcf [8], tentatively
attributing the increase in the valuegeffmcf as the filling factor decreased to increasing
exchange enhancement ofgeff (for a discussion of such effects see e.g. reference [20]).

Although the model of reference [8] provides an appealing qualitative solution to the
vanishing of various fractional quantum Hall features nearν = 3

2 at certain angles, it cannot
give a satisfactory quantitative account of the sizes of the gaps shown in figure 6. Attempts
to use the predictions of equations (5) and (6) with a fixed, angle-independentmcf and ageff

varied to fit the angles at which the gaps vanish were unsuccessful in the casesν = 8
5, 7

5

and 4
3. However, perhaps the most marked failure concerns the gap associated withν = 5

3;
the use of the values ofmcf andgeff given in reference [8] with equation (5) predicts that
this gap is determined solely by the spin splitting at low tilt angles. It should therefore
grow as 1/cosθ [8]. In figure 6(a) this is seen not to be the case, as the gap increases much
more slowly than 1/cosθ up to θ ∼ 65◦ and then decreases. A clue as to what might be
happening is given by comparing theθ -dependence of the gap atν = 5

3 (figure 6(a)) with
those of the gaps close toν = 1

2 (figures 3(b) and 3(c)); the functional form of all of the
curves is very similar. Indeed, the gap atν = 5

3 is fitted quite well by the function

3h̄e|(B − B3/2)|/µ (8)

with µ taking the values given by equation (3) (see figure 6(a)). This suggests that at angles
θ 6 65◦ the energy gap atν = 5

3 has a similar origin to those of the fractions aroundν = 1
2.
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In an attempt to fit the variation of the gaps atν = 8
5, 7

5 and 4
3, equation (5) was

modified to the form

E(n) = − h̄e

me

{
3|(B − B3/2)|(n + 1

2)

(µ′/me)
± geffB

4

}
(9)

with

µ′ = µ′(0)/cos(0.75θ). (10)

That is, the composite fermion effective mass was allowed to vary withθ in a similar
fashion to that observed close toν = 1

2 (equation (3)), but withµ′(0) as a fitting parameter.
Typical fits are shown as curves in figures 6(b)–6(d) and the fit parameters are detailed

in the figure captions. Successful fits were obtained forν = 7
5 and 4

3 (figures 6(c) and 6(d))
with fit parametersµ′(0) = 0.33 ± 0.03me (both ν = 7

5 and 4
3), and geff = 1.50 ± 0.05

(ν = 7
5) and geff = 1.45 ± 0.10 (ν = 4

3). The values ofµ′(0) are close to the values of
composite fermion effective masses at aroundν = 3

2 proposed and justified in reference [8].
Whilst the values ofgeff are a factor∼3 times theg-factor of bulk GaAs, such enhancements
due to exchange interactions are by no means large nor without precedent [20].

In contrast, although some aspects of the functional form of the energy gap associated
with ν = 8

5 were predicted by equations (9) and (10), it proved impossible to fit the variation
quantitatively using sensible parameters (see figure 6(b) and the caption). Considering also
the much larger effective mass (0.7me) used to fit the gap atν = 5

3 (figure 6(a)) compared
to those used withν = 4

3 and 7
5 (0.33me; figures 6(c) and 6(d)) it seems possible that the

behaviours of the composite fermion energy levels in the cases whereν 6 3
2 andν > 3

2 are
different.

6. Summary and conclusions

The results described in section 3 suggest that the fractional quantum Hall effect close
to ν = 1

2 in tilted magnetic fields may still be described in a consistent manner by the
composite fermion model, but with a composite fermion effective mass that depends on the
tilt angleθ . It seems that the component of field in the plane of the 2DES causes the energy
gaps to increase in an approximately uniform fashion (figures 3(b) and 3(c)). At present,
there appears to be little theoretical work on the dynamics of composite fermions in tilted
magnetic fields. However, in the period before the composite fermion approach evolved,
some work was carried out on the effect of an in-plane field on the fractional quantum Hall
effect (see e.g. reference [22]). In such works the fractional-quantum-Hall-effect gaps were
predicted to increase due to the compression of the electronic wave function in the direction
perpendicular to the plane of the 2DES caused by the in-plane component of the magnetic
field; i.e. the in-plane component of the field makes the electrons appear more ideally two
dimensional. Such an effect may well be causing the enhancement of the gaps close to
ν = 1

2 seen in the present work. If this is the case, then the effect should depend on the
exact shape of the 2DES potential; e.g. an in-plane field should have far less effect on a
2DES in a narrow quantum well than in a heterojunction. Studies of the composite fermion
effective mass in a perpendicular field have suggested that the mass is some ‘universal’
function of the effective magnetic field (although the exact form of the function is still
contentious) [5, 6]. However, all of these experiments have been carried out on GaAs–
(Ga, Al)As heterojunctions with very low depletion charges and remote dopants, in which
the potential well shapes will be rather similar. If the angle dependence of the composite
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fermion effective mass observed in the present work is due to the compressing effect of the
in-plane magnetic field, it suggests that the ‘universal’ behaviour of the composite fermion
mass in a perpendicular field may well disappear when different material systems or potential
well shapes are studied.

Turning to the results close toν = 3
2, it seems that the ingenious composite fermion

model proposed by Duet al [8] can qualitatively account for some of the disappearing
fractionalρxx-minima, but cannot predict energy gaps quantitatively. With the inclusion of
an angle-dependent effective mass, quantitative values of the gaps for fractions withν 6 3

2

can be predicted. However, the gaps forν > 3
2 cannot be fitted using similar parameters.

It seems that whilst the composite fermion approach provides an elegant description of the
rough form of theρxx-oscillations nearν = 3

2, some other ingredient (e.g. a very strongly
field-dependentg-factor) is as yet missing.
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Note added in proof. In section 6 of this paper it was proposed that the orientation dependence of the composite
fermion (CF) effective mass resulted from the compressing effect of the in-plane component of the magnetic field.
During the production of this paper, we were able to demonstrate that this assertion is in fact correct using a
model based on the Fang–Howard variational wavefunction and the calculations in reference [22]. Our model
successfully reproduces the angle dependence of the experimental CF masses with no adjustable parameters and
is described in reference [23].
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